<

=

-4

~

(- -]

A
: REPORT NO, 1749

SYMBOLANG - A SLIP EXTENSION
ALGEBRAIC MANIPULATION
M. A, Hirschberg
November 1974
Apareved far public release; distribution unlimited,
USA BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND

Al

35]
©

B
O
o

]
.

0

1~

:z,,\om;':‘a\:,ﬂ,‘a,.{;w. PR PR | R) . D A R N TT L RIS K RN 2% PRI ST B A RN KR R 3 A TR R ATt COP A

- Destroy this report when it is no longer needed
Do not return it to the originator.

Secondary distribution of this report by originating °
or sponsoring activity is prohibited.

Additional copies of this report may be obtained
from the National Technical Information Service,
U.S. Department of Commerce, Springfield, Virginia
22151.

The findings in this report are not to be construed as

an official Department of the Army position, unless
so designated by other authorized documents.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE nraiEnD INETRUCTIONSL
ED Rk N\ Lo UMD LS LANGg T osUn
1. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT’S CATALOG NUMBER
BRL REPORT NO. 1749
4. TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED
SYMBOLANG - A SLIP EXTENSION FOR ALGEBRAIC
MANIPULATION) I ,
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

X hhong
M. A. HLTSCuucrg

PERFORMING ORGANIZATION NAME AND ADDRESS 10.
USA Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland 21005

MENT, PROJECT, TASK
V)

M ELE
&WOK NIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
US Army Materiel Command NOVEMBER 1974
5001 Eisenhower Avenue 13. NUMBER OF PAGES
Alexandria, VA 22304 29
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)
UNCLASSIFIED
15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
17. DISTRIBUTION STATEMENT (of the abatrect entered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse side |f nocessary and Identify by block number)
Algebraic Manipulation Formula Manipulation
Symbol Manipulation Data Manipulation
List Processing Formula Translation
List Manipulation Symbolic Processing
String Processing
20. ABSTRACT (Continue on reverse sidw if neceseary and identity by block number)

SYMBOLANG, originally developed by A. Lapidus, M. Goldstein, S. Hoffberg, and
expanded by H. Bernstein, S. Greenspan, A. Magnus, and others is a collection
of FORTRAN-callable subroutines which can perform arithmetic operations

adAdi+inn ciithtracrtinan (] 3 Wats) A1vr3 1 ~
addition, subtraction, multiplication, division, etc.), substitutions,

evaluations, and differentiations on expressions represented as SLIP lists.
SYMBOLANG consists of seventy-two subprograms and is operational on the
BRLESC II computer.

DD , FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

JAN 73 Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

b=t
[

—i
Y—
—t

TABLE OF CONTENTS

INTRODUCTION. & ¢ ¢ &« & & &

A, Background.
B. Ordering and Simplification . . .
C. System Usage. « « « & & &

Basic Set
. Expanded Capability Set

= >

PROGRAM EXAMPLES.

A. Inputs and Outputs.
B. Arithmetic Calculation. . , . . .
C. Differentiation
D. Truncation. . . « ¢« « « ¢ « « o &
E. Evaluation. « « « « « « &

)
rl
C
law]
=t
z
[on}]
El
=
7~
v

)

w

~N

[¢]

I. INTRODUCTION

A. Background

it
hmetic atlon.
subtraction, d1V151on etc.). substltutlons, evaluatl s, and dlfferen-
tiations on expressions represented as SLIP 115ts.3"“5 It allows the
performance of such operations as multiplying the expression (1 + x) by
the expression (1 - x) to obtain the expre551on (1 - x2) rather than
some numeric value. SY BjL \G is one of several formula manlpulauon6
atl b

or algebraic mdﬂlp“l

A~

stems in existence.

SYMBOLANG has been used extensively, It has been employed in
generating coefficients for Taylor series, coefficients for the solution
of partial differential equations with boundary values, expansion of
determinants, and differentiation of complicated expressions. In addi-
tion to the many subroutines provided in SYMBOLANG, the user has the
ability to define new functions at will and incorporate them into the
system.

SYMBOLANG is an extension of SLIP, which SYMBOLANG uses as a list
processing system. The virtue of using a list processing system for
embedding a symbol manipulator is that the space needed to treat

lLapidus, A., and Goldstein, M. Some Experiments in Algebraic Manipula-
tion by Computer. Communications of the Association for Computing
Machinery, 1965, 8 501-508.

2Findier, N. V., Pfaltz, J. L., and Bernstein, H. J., Four High-level
Extensions of Fortran IV: SLIP, AMPPL-II, TREETRAN, SYMBOLANG,
New York, Spartan Books, 1972, 305-387.

3Weizenbaum, J., Symmetric List Processor. Communications of the
Association for Computing Machinery, 1963, 6, 524-544,

“Hirschberg, M. A. SLIP for the BRLESC II Computer, BRL R 1731, July

SFindler, N. V., Pfaltz, J. L., and Bernstein, H. J., Four High-
Level Extensions of Fortran IV: SLIP, AMPPL-II, TREETRAN, SYMBOLANG.
Y 1

-82.

6Sammet, J. E., Survey of Formula Manipulation. Communications of the
Association for Computing Machinery, 1966, 9, 555-568.

(95

expressions expands and shrinks over a large range., A list processing
language allows the allocation of space needed; unneeded space can be
returned to the system. In SYMBOLANG, it is the user's responsibility
to return unneeded space to the system.

on the BRLESC II computer. The SYMBOLANG-SLIP system is stored on the
disc and is accessed by use of the following statement:

* COMPILE DISC, SYLANG, ALL
SLIP is stored on the disc and is accessed by use of the following
statement:
* COMPILE, DISC, SLIP, ALL

wrltten primaril

nsert and de
1.
v
i

in FORTRAN and allows the programmer to
items, and scan items on a list. In

e
hought of as parenthesized group of
may be placed on a SLIP list, one must

[

y 1
let
et
t
s

<
>
l

3N
= g
e+ (
n
(o]
[
o

ay
t o

D
e

We will assume the reader has a knowledge of FORTRAN and a working
knowledge of SLIP in the sequel of the text.
e represented as SLIP lists in the following manner
form):

. " -]
< expression > « ({ < term > } g)
@

< term > « (quantity { < factor > < power > } 4)

< faector > « { <
~ AL WL

= ! .
< power > <« quantity | < expression >

’

where the left-hand side of each line represents the class of objects
being defined; the angles < > enclose class names; braces { } indicate
that the enclosed objects are to be included in the definition for each

1 o~ PR EPRR . 4. Y i1) o w !
number of repetitions indicated by the numbers on the right brace; |
itio

separates altemative definitions; quantity is the class of floating
point quantities other than zero; and symbel is the class of expression
symbols.

In keeping with Bernstein's notation, double brackets will be used
to denote real world expressions, and commas will be used between list
elements.

-The expression [[x]] is a nonconstant expression consisting of one
term With coefficient 1, a single factor 1HX, and the power 1. It is
represented as the list ((1., 1HX, 1.)).

z
Q

In general a Hollerith constant of from one to ten nonblank char-
acters is used to represent each symbol in an expression. All function
arguments are represented as lists. An expression is broken up into a
sum of terms, where each term is broken up into a product of factors

raised to powers. The trivial coefficient and power 1 are also intro-
duced wherever necessary. Parentheses without a function name have been
treated as the appearance of a special function name that has arbitrarily
been translated into the expression symbol 3H1.*,
B. Ordering and Simplification

In SYMBOLANG, identical terms differing only in their coefficients
are combined, and a 0 coefficient causes a term to be dropped from an
expression. Identical factors differing only in their powers are

combined, and a 0 power causes a factor to be dropped. If the constant
expressions [[0]] and [{1]] are raised to any power, they are unchanged.

SYMBOLANG imposes an ordering on all expressions and their com-

ponents. All aperaulons preserve this ordering, and some impose it.

The ordering imposed is built up from orderings on numbers and expression

symbols Numbers are ordered arithmetically and expression symbols lexi-

cographically using the following ordered alphabet:

0123456789ABCDEFG
HIJKLMNOPQRSTUVUWX
YZ+-*/()8=""11:4<>

ters, Thus, 3Hl.* is less than

1ing before all other char
s less than 2HAA which is 1

Factors within terms and terms within expressions are reordered to
achieve expressions of the lowest possible ordering. Terms and factors
are combined and dropped where possible as previously defined.

A hand created expression may be simplified by calling subroutine
SMPL (one of the 72 SYMBOLANG subroutines).

SMPL (LIST) reorganizes the expression LIST into simplified form
returning LIST as its value. The operation is timewise expensive and
should be used sparingly.

The 1ist of available space must be initialized. For this we can
use:

-3

o
—

Qo
(3 et}

5

c
MM

-1l -~ TAITTAC
dall LU I1IIN11AO
ION, These ar
COMMON AVSL,

also sets u
e accessed by:
X(100)

X(98), X(99), and X(100) are used extensively in SYMBOLANG and
should not be altered by the user.

-

D. ("]

T
1

XSQ

an
wWy,; all

blocks w1th these characters.

In addition to the SYMBOLANG subroutines,
of the SLIP subroutines.

S0 LT LKa2T L SVl VL QUL ANT 2Ll LI

able the entire SLIP package for use with the system.

the system requires many
For completeness, the author has made avail-

Following is a list of all the entry points in the SYMBOLANG-SLIP

package.
L (=4

ADD
ADVLER
ADVLWL

AMIIONT

AUVONL

ATNAD
ALVUAL

CONT
DERROR
EVALUE
ID
INLSTL

INTENT

ITSVAL
LDIF

tarrx

LISTON
LOCT

ADNLWR
ADVLL
ADVLWR

ATMIOATD

ADUVONK

INTGER
KOKE
LEXICO

LN a L

LOFRDR
LRDROV
LSQCDR
LSQDEF
LSQGNF

LSQMEX
LSQMNS
LSQOU1
LSQOU6
LSQRAZ
LSQUN1
LSQUN6
TCTCNTY
Lol Lk{h
MADATR
MADRGT
MAN 4

ADVDL
ADVINL
ADVSEL

INITAS
INSBST

1KADLS

LANORM
LIST

LNKR
LOOKUP
LSCMPR

LSQDES

T CNITM
Loyuvirl

LSQOU2
LSQOU7
LSQSBS
LSQUN2
LSQUN7

TCTMDY
Lo 1IYINNN

MADLFT
MAKEDL
MAN5

o

ADVDR
ADVINR
ADVSER
ADVSWL
ROT

Dyl

CPYTRM
DVTRM

HITENT
INITRD
INSUBT

IRALST
LCNTR
LISTAVY
LOoC
LPNTR
LSPNTR

r OATOT

LSQDSF

T1TCNATND
LOYLUR

LSQMN2
LSQMNL
LSQOU3
LSQOUS
LSQTRC

LSQVAL

1CTDDN
LJIIIRU

MADNBT
MAN1
MAN6

INLIST
INTARG
TRARDR
LDATVL
LISTMT
LOCARG
LPURGE
LSQADD
LSQCPY

T OMATTIN

LSQERR
Y QﬁTMT

LSQOUT
LSQTYP
LSQUN4
LSQVVL
TVIRY1

LV LNV 4

MADNTP
MAN2
MAN7

MTLIST
NTIZUWN7/A T
WNLEWVAL

NUMPY
POPBOT
PRIPUT

ISFEY ok Xd

NNATYIT
NURAL VL

NXTLFT
POPMID
PRLSTS
REEL

RITEIT
SCHATR

SEQSR
C TN
O LY

SUBSBT
TAN
TRUNC

NAMTST
NI R Y
NULDLL

NXTRGT
POPTOP
PUTLST
RESTOR

OATMmTyI e

SETLIND

cNryn
ULV L

STRDIR
SUBSTP
TERM

VALARG

-] Q
PRI

STRIND
SUBT
TOP
VISIT

The pattern of code in SYMBOLANG is usually to create operands, per-
form expression operations, and to erase unneeded operands.

CYMRNT AN vwaliacec haavrily An ~ralling Sfimetinne ac 3 € +hayy il
DACIRDULNAIYNG LT 1LACD i1cay LL)‘ Wil \.a;;;us LwlbLLUllD [~ o) 4L L1IT)‘ WCLC DUU‘
routines, and using subroutines as if they were functions. In order to

M7
call a FORTRAN function on the BRLESC II computer, one must provide an
extra argument for the value of the function. This argument does not
need to be accessed by the user, just provided by him. For instance, the
function XFUN(A, B) may be called as follows:
CALL XFUN (C, D, TEMP)
TEMP would contain the value of the function,

In using a subroutine as a function, the subroutine must have at
least one argument, The value of the subroutine cannot, however, be
assumed to be available for use.

Functions and subroutines are often deenlv nested in SYMBOLANG,
.................................... Ply nested 1n oSYMBOLANG,

II. SYMBOLANG SUBROUTINES

A. Basic Set

Tha cuthroautinece nf SYMROATANG will he diccliiceed alnhahatically Thi g

411N LUULJAVALV LIV D NS A WLV LW YT L4 2= S S N~ WML JIOwiAoIWwW “LPII“U\IUL\.’GLLI. 11140
is arbitrary, but it overcomes artificial groupings according to function
or complex1ty

(1) FUNCTION ADD (LIST1, LIST2)

ADD is one of the older SYMBOLANG functions whose use should be
avrnt Aad T+ hace a nmauwuav ~atmenwnnart TSAADND whi3i~rh aehnttld ha 1scad dSnc+rand
AVULUCTU, AL tlado a 1TWC L LUWILCLHGLL LQ\{I‘\IJIJ WillLCil 11w PR v uscu dilloLoau,

0w

nnnnn TCT)
1014

TTCT e 3
1 LIST]1 to expression L .
o
N

(2) SUBROUTINE ALOAD (ARRAY, VARL, VAR2, . . ., VARK), where
K= 1,55,

ALOAD stores the machine address of the variables VARiL into the
array elements ARRAY(I). A call to ALOAD should be made to store ad-

dresses of arguments of any routine that uses INTARG, LCCARG, or VALARG,
ALOAD has a variable length calling sequence. ALOAD returns the argument
count in the event an argument is a floating point 999 (used where

multiple entries are not provided). The argument count is common block
MNYARG.

(3) BREAK (LIST1, SYMBOL, LIST2, LIST3)

BREAK is one of the older SYMBOLANG functions whose use should be
avoided. It has a newer counterpart LSQTRC which should be used instead.
BREAK adds to the expression LIST2 those terms of the expression LISTI
that contain the expression symbol SYMBOL and replaces LIST2 with this
result. The remaining terms of LIST1 are added to the expression LIST3
(which is changed to this new value).

4 (LIST1, LISTZ2)

CPYTRM is one of the older SYMBOLANG functions whose use should be
avoided. CPYTRM removes the top element from list or expression LIST1
and places it on the bottom of list or expression LIST2. If LIST1 is
empty, no change is made and CPYTRM returns 0; otherwise, CPYTRM returns
1. Correct ordering is not necessarily preserved, and changes to LISTI

o

may affect expressions of which it is a subexpression.
(5) DVSUM (LIST1, SYMBOL, LIST2)

DVSUM is one of the older SYMBOLANG functions whose use should be
avoided. It adds to the expression LIST2 the result of dividing ex-
pression LISTI by expression symbol SYMBOL. L
result which 1

o

ST2 is replaced with this
L
i

1
h is also returned as the value of the function.

~~
(=]
N
2
<
=
2
~

LIST1, SYMBOL)
DVIRM divides expression LIST1 by expression symbol SYMBOL.

(7) EVALUE (LIST1, SYMBOL 1, QUANT 1, . . ., SYMBOL 6, QUANT 6)

(o3 o]
2]

rh Hh

he older SYMBOLANG functions whose use should be
vvvvvv . A ther routines are available for evaluation.
EVALUE evaluates the expression LIST1 with the expression symbols SYMBOL
i set to the floating point constants QUANTi. The evaluate returned as
the value of the function also replaces the expression LIST1. EVALUE

(2]

O ct

1 Y o
4 L\ A"
number

=

1n
iv

has a fixed length calling sequence on BRLESC II. The floating point
value of 990 should be used for SYMBOL i to 51gn1fy that nd the
tion

Arguments following the 999 flag must be set to zero to insure proper
calling sequence termination,

GETCOE is one of the older SYMBOLANG functions whose use should be
avoided. It adds to the expression LIST2 the coefficient of the expressioc
symbol SYMBOL raised to the floating point constant power QUANT in the
expression LIST1, LIST2 is replaced with this expression which is also
returned as the value of the function.

(9) HITENT (LIST1, SYMBOL, LIST2, LIST3)

HITENT also containing entry INTENT is one of the older SYMBOLANG
functions whose use should be avoided. It returns the result of adding
a level 1 substitution of the expression LIST1 for the expression symbol
SYMBOL in the expression LIST2 to the expression LIST3 INTENT acts

as does HITENT eicept that the substitution is performed on all levels.
LSQSBS is a replacement for HITENT in the new code.

(10) ICHR (IALPHA)

ICHR returns a number for a 1etter of the alphabet or the digits
0-9. One is returned for A, 2 for e « «s 26 for Z, 27 for 0, . . .,
and 36 for 9.

(11) INLIST (VAR, QUANT1, QUANT2)

INLIST returns a list representing the expression found on logical
unit or list QUANTI1, The variable or array element VAR will also contain
the newly created expression. INLIST is a means of translating FORTRAN-
like expressions into their internal representation on lists. Input is

handled line by line with columns 7 through 72 scanned for an expression,
If a § is encountered, or the word NOMOR is encountered in columns 1-5,
or if columns 1-5 are nonblank, the scan ends. Expressions are formed
from symbols and numbers combined by the arithmetic operators +, -, *

and ** halanced <
/, and **, balanced parentheses, and commas.

]

On OCC&QIOH it is desirahle to have the cap ability of innnfting

_________ desi ability of inputtin
an equation, In thls instance, if QUANT2 is set to 3HVAL, it is possible
to input an equation, with the "=" being added to the operator 1list,

When this option is desired, a double $ is needed to terminate the input

expression. In all cases where an '"=" appears and this option is not

desired, QUANTZ should be set to the floating value of 999, 1In addition,
3 A To o Lmom o P T U,

1s before the last equal sign {in case there are more than 1)

ela mvmamnccd A
LIIC CXPITOSS540

11

3

-
-

ar , the input line of the form

e
he valid representation of [[10]].
Even though these expressions before the last equal sign are effectively

comments, they must conform to the syntax for input expressions.

les IRV
n @

(12) INSBST (LIST1, SYMBOL, LIST2, LIST3)

T is one of the older SYMBOLANG functions whose use should be
avoided. It returns the result of adding an all-levels substitution of
the expression LIST1 for the expression symbol SYMBOL in the expression
LIST2 to the expression LIST3. LSQSBS is a better choice for this type
of substitution.

(13} INSUBT (LIST1, SYMBOL, LIST2, LIST3, SYMBOL1l, QUANTIL, . . .,
SYMBOLS, QUANTS)

INSUBT is a function of a fixed number of arguments. The argu ment
t

i
minated by a flecating point value of 999 for the first
us

(ﬁ w

(nd P'i

symbol SYMBOLi not used, followed by zeros for all remaining argumen
INSUBT returns the result of adding an all levels substitution of the
expression LIST1 for the expression symbol SYMBOL in the expression LIST2
to the expression LIST3 and then truncating on the expression symbols

SYMBOLi to the powers given by the floating-point quant1t1es QUANT1. The

. S T TOMY 1 __
expression LIST3 1s replaced by the result. INSUBT is one of the older
SYMBOLANG routines whose use should be avoided. LSQSBS and LSQTRC should
be used to perform the operations described.

(14) INTARG (ARGS, INT)

INTARG returns the value of the INTth argument ARGS of the routine
that called INTARG. A call of ALOAD must be made before INTARG may be

PR |
uscd.

(15) KOKE (ALPHA)

KOKE stores ALPHA on an internal list and returns 0 if it has not
encountered the last item to be stored and 1 if it has KOKE is called

(16) LDIF (LIST, SYMBOL)

LDIF returns the derivative of expression LIST with respect to the
expression symbol SYMBOL. Only explicit functional dependence is
considered.

cographical sort of the expression LIST.

12

10\ 1T
(16) L1oS

LISTON is a two argument call to INLIST for input on the standard
input unit (at the BRL unit 5).

(19) LOCARG (ARGS, INT)

G returns the machine address of the INTth word of ARGS. A
OAD must be made before LOCARG may be used.

ol %Y
CAR
Li

OCA
call of A
(20) LOOKUP (ITYP, SYMBOL, LIST, INT)

LOOKUP defines the expression LIST to be the partial derivative of
the fumction represented by the expression symbol SYMBOL, with respect
to the argument INT, an integer quantity. ITYP is used when the function
s determined by user definitions. If ITYP is not zero, a user-defined
cti

(21) LSCMPR (LA, LB)

LSCMPR compares the terms LA and LB with their coefficients removed.
Zero is returned if LA and LB are equal, -1 if LA is less than LB, and
+1 if LA is greater than LB.

~

22) LSQADD (LIST1, LIST2)

LN

LSQADD returns the sum of expressions LISTl1 and LIST2.

(23) LSQAPL (NAM, LIST, QUANT)

o~ e o v Qmr —

AM to expression LIST and all sub
y value except floating point 999.

TN e 13
LOVAr L PP

lies
expressions of LIST

ADT ~

o
-

Lecon mde 2 mom
the function
i

N
f QUANT is an
(24) LSQCDR (LIST, SEQ)

LSQCDR substitutes a user-defined argument in expression LIST using
sequence reader SEQ.

(25) LSQCMP (LA, LB, ITYPE)

LSQCMP is a lexicographical comparison of LA and LB, If ITYPE is
3HEXP then LA and LB are expressions, if ITYPE is 3HTER, they are terms,
and if ITYPE is 3HFAC, they are factors. If ITYPE is anything else,

LA and LB are terms to be compared as if their coefficients were 1.0.
Note that the sequence readers are advanced if ITYPE is 3HFAC. Zero is
returned if LA and LB are identical, -1 if LA is lexicographically less
than LB, and +1 if LA is lexicographically greater than LB.

Lildall L, 4alld AALLW Akally BiK

(26) LSQCNM (SYMBOL1, SYMBOL2)

13

LSQCNM returns 0 if the expression symbols SYMBOL 1 and SYMBOL 2 are
identical, -1 if SYMBOL1 is lexicographically less than SYMBOL 2 and
+1 if SYMBOL 1 is lexicographically greater than SYMBOL2.

(27) LSQCPY (SEQ)

urns a list which is a copy of the items to the right of
+ 3 Af camisan~an -en_ndn-q SE
(% UL DC\{UCII\.C IcadclIl Qo

(28) LSQCXP (LIST)

LSQCXP returns the list or expression LIST or a full copy of LIST
via LSSCPY. The choice is determined by the setting of the variable
LSQCSX in common block LSQCSX. If the variable is 0, the list itself is

o~ amr e o QrnDv TTCQ

returned; otherwise, LSSCPY (LIST) is returned.

(29) LSQDEF (SYMBOL, LIST1, LIST2, NOCUR)
LSQDEF defines the symbol SYMBOL to be the expression LIST1 in which

the expression symbols on the list LIST2 hold the places into which any

arguments appiied to SYMBOL are to be substituted. Both LIST1 and LIST2

are erased by the call. The user really uses LSQDEF to define his
functions which may be evaluated later in his program.

When NOCUR is 5HNOCUR, the expression symbol SYMBOL is made to appear
undefined. This permits SYMBOL to appear within LIST1 without causing
infinite loops.

LSQDEF must be called with four arguments; however, the first
argument which is an integer 999 effectively terminates the callin
sequence. The result of the calling sequence in this instance should be
padded out with zeros.

(30) LSQDES (LIST)
LSQDES erases the list or expression LIST. When a list is no longer
needed, it should be destroyed to make cells available for other lists.

(31) LSQDSF (FUNCT, SYMBOL)

LSQDSF aids in defining and evaluating functions. The FORTRAN
function FUNCT {defined in an external statement) is applied to the next
expression, if any, reached by a right advance of LSQDMF(13). If this
expression is constant, a constant is returned; otherwise, the
UAPleSSIGn :'y'mbﬁl SY”BOL is used as a function name, and th'S expreSSiﬁn

found by the right advance of LSQDMF(13) as its argument.

(32) LSQERR (ARG)

LSQERR writes an error message and terminates the SYMBOLANG run.
ARG is a Hollerith word giving the name of the routine in which the error
occurred,

(33) LSQGAR (SYMBOL)

LSQGAR returns the next expression to be reached by a right advance
of LSQDMF(13) if there is one. If not, an error is given with expression
symbol SYMBOL as the error message. If SYMBOL = 0, a zero is returned

if there is no next expression in the advance.

(34) LSQGNF (SEQ, NAME, NOARGS)

SEQ is a sequence reader assumed pointing to the first item of a
factor within a term. SEQ is advanced until it points to a non sublist
and the last value of the advancement flag is returned as the value of
LSQGNF. NAME and NOARGS contain the name of the function in the factor

and its number of arguments.
(35) LSQGTM (LA, VAR, POW1, POW2, LVAL)

See LSQTRC with a calling sequence of LA, VAR, POW1l, POWZ, LVAL +1,

F—
.

LSQIDR is a subroutine called by LDIF (on its first use) to define
the derivatives of the expression symbols: 3H1.*, 3HSIN, 3HCOS, 3HTAN,

4HSECH, 4HCSCH, 7HARCSINH, 7HARCCOSH, 7HARCTANH, 7HARCCOTH, 7HARCSECH,
7HARCCSCH, 3HEXP, and 3HLOG. The defined derivatives are respectively:
1., COS(X); -SIN(X), SEC(X)**2, -CSC(X)**2, TAN(X)*SEC(X), -COT (X)*CSC(X)
1/(1 - X**2)**, 5, -1/(1-X**2)**,5, 1/(1 + X**2), -1/(1 + X**2),

X**_1%(X**2-1)**=,5, —X**_.1*(X** 2-1) **-,5, COSH(X), SINH(X), SECH(X)**2,
-CSCH(X)**2, -SECH(X)*TANH(X), -CSCH(X)*COTH(X), 1/(X**2 + 1)**,5,

1/ (X**2-1)**,5, 1/(1-X**2), =1/(X**2-1), =X**=1*(1-X**2)**- 5,

SX**- % (X**2+41)%*- .5 EXP(X), 1/X.

LSQINI is a subroutine called by LSQVAL (on its first use) to define
the expression symbols: 3HSIN, 3HCOS, 3HEXP, 3HLOG, 3HTAN, 6HARCTAN,
4HTANH, 3H1.*, 2HV., 2HQ. and 3HIF. The definitions represent
respectively: SIN(X), COS(X), EXP(X), LOG(X), TAN(X), ARCTAN(X), TANH(X),
the evaluates of the arguments enclosed in parentheses (3Hl.*), the argu-

ent evaluated twice and returned as its value (2HV.), the unevaiuated
H T ion such that scanni
en numbered argument
o F.). The val

=1
@
=
D (@D
<
P
[T

e =]

is an unevaluated argument. If there is an odd number o
the last argument is returned unevaluated. In all other cas
returned.

Note LSQINI does not define all of the functions whose derivatives
efined in LSQIDR.

-~
4

[« %

ara
ailLc

(38) LSQLCO (LIST)

LSQLCO returns a lexicographically ordered copy of expression LIST.
(39) LSQMEX (LIST1, LIST2)

LSQMEX returns the product of expressions LIST1 and LIST2.

(40) LSQMNL (QUANT1, . . ., QUANT25)

P
* s

LSQMNL returns a list on which its arguments QUANTi, i = 1, 25,
appear. LSQMNL has entries LSQMN1, LSQMNZ2, LSQMN3, LSQMN4, LSQMNS,
and LSQMN7 to account for calls with 1, 2, 3, 4, 5, and 7 arguments.

(41) LSQMTM (LIST1, LIST2)
LSQMIM returns the product of terms LIST1 and LISTZ.
(42) LSQNAM (LNAM)

LSQNAM returns a unique name for each time it is called in its

argument and for its value.
(43) LSQOUT (QUANT1, . . ., QUANT25)

LSQOUT outputs items for function LSQPNT. The argument list is
indexed through and obeyed sequentially. LSQOUT has QUANTi, i = 1, 25
arguments. Entries LSQOU1l, LSQOU2, LSQOU3, LSQOU4, LSQOU5, LSQOU6,
LSQOU7, and LSQOU8, are provided to account for calls with 1, 2, 3, 4,
5, 6, 7, and 8 arguments respectively. The following argument blocks
are defined:

INITIAL ARGUMENT NUMBER OF ARGUMENTS IN BLOCK

SHFLUSH 1

orces current line out.

4HEDGE 2
Sets right margin

6HMARGIN 2
Sets left margin to integer represented by second argument of
the block.

b
Ch

4HUNIT 2
Switches output to a new logical unit.

SHCFLAG 2 or3
If second argument of the block is zero, no special continuation
character is to be used (i.e., in initial state); otherwise, the
second argument specifies a column to continue a continuation
flag (usually 6) and the left most non-blank character of the
third argument is used in that column for continuation images.

0 2
Outputs characters to a block or the end of a word.

Positive integer 2
Outputs the specified number of characters from the second
argument which may spread over several machine words.

(44) LSQPNT (LIST, LTITLE, VALU)

LSQPNT is used to print expressions LIST and titles for expressions
LTITLE. All other uses of LSQPNT are for internal use of SYMBOLANG.
The third argument should be set to floating point 999.

(45) LSQRAZ (LIST1, LIST2)

LSQRAZ returns the result of raising the expression LIST1 to the
expression LIST2 power,

(46) LSQSBS (LIST1, SYMBOL, LIST2, INT)

LSQSBS returns the result of substituting expression LIST1 for the
expression symbol SYMBOL in the expression LIST2 through the level
specified by the integer quantity INT. If INT is -1, a substitution is
made on all levels (an infinite loop may occur if LIST1 contains SYMBOL).

(47) LSQTRC (LIST, SYMBOL, QUANT1, QUANT2, INT1, INT2)

LSQTRC returns an expression derived from expression LIST1 by re-
taining certain terms of the expression through level INT1, an integer -
quantity, and all terms on deeper levels. A term is retained if it
contains the expression symbol SYMBOL to a nonconstant power or to a
power between the floating point quantities QUANT1 and QUANT2. INT2
helps to determine how the truncation occurs. If INT2 is 1 or 2, one
gets SYMBOL**EXPRESSION TRUNCATED. If INT2 is 2 or 4 one gets SYMBOL**P
truncated, P between QUANT1 and QUANT2, and for INT of 1 or 3, one gets
SYMBOL**P truncated with P not between QUANT1 and QUANTZ.

(48) LSQTYP (QUANT, VAR]

17

LSQTYP returns -1 if the quantity QUANT is not a list and 0 or
greater if it is a list or expression. The variable VAR is set to the
quantity QUANT if QUANT is not a list. If QUANT is to be considered a

list but not necessarily an expression, then VAR will not contain useful
information.

(49) LSQUMN (LIST, QUANTI, . . ., QUANT2S)

LSQUMN removes k (k = 1, 25) items from the bottom of list LIST,
the bottom item going to QUANTi, then next to QUANTi-1l, etc. The
respective entries LSQUN1, LSQUN2, LSQUN3, LSQUN4, LSQUNS, LSQUN6, and
LSQUN7 are provided to handle calls with 1, 2, 3, 4, 5, 6, or 7 arguments,
It undoes the effect of MANY,

LSQVAL returns the result of evaluating expression LIST through
level INT, an integer quantity. If INT is negative, no limit is in
effect. If INT is 0, a copy of the expression LIST is returned. The
one argument call (i.e., a call with INT = 999) is equivalent to a call

with negative INT.
(51) LSQVVL (LIST)
LSQVVL returns a location to VISIT in order to evaluate the express-

ion LIST. The scanning of arguments is made possible using LSQDMF(13)
as a communication cell,

, QUANT1, . . ., QUANT25)
MANY places QUANTi, i = 1, 25, in turn to the bottom of LIST and
returns LIST as its value. The entries MAN1, MAN2Z, MAN3, MAN4, MANS,

MAN6, and MAN7 are provided for call with 1, 2, 3, 4, 5, 6, and 7
arguments.

rovides the quantity QUANT with an integer name.
(54) NUMPY (LIST, QUANT)

NUMPY is one of the older SYMBOLANG routines whose use should be

avoided. It replaces the expression LIST with the result of multiply-
ing this expression with the floating point constant QUANT and returns
+ha nrodiict acg 1+te valne
cllv HLUUU\,L aos 4L Lo VaaiLluwve

(55) POPMID (VAR)

POPMID returns the list element on top of which the variable VAR
is sitting, removes that element from the list, and advances VAR to

18

the left. VAR is treated as a se

it was newly created.

(56) POWER (LIST, SYMBOL)

POWER returns the leftmost power to which the expression symbol
SYMBOL is raised in the expression LIST, considering only the first
el Zero is returned if SYMBOL is not found.

(57) PRIPUT (HOL, LIST)

PRIPUT is one of the older SYMBOLANG routines whose use should be
avoided. PRIPUT is equivalent to LSQPNT and is used for outputting.

(58) PUTLST (LIST, QUANT1, . . ., QUANT27)
PUTLST is one of the older SYMBOLANG routines whose use should
be avoided. PUTLST returns the expression LIST onto which the terms

QUANTi have been added. If PUTLST is called as above but with a leading
0 in the calling sequence, PUTLST will not reorder factors.

(60) SBST (LIST1, SYMBOL, LIST2, LIST3)

SBST acts as does INSBST except that substitution is limited to
i

is N.

SMPL reorganizes the expression LIST intc simplified form, returning
LIST as its value. The reorganization is an actual change and can
properly alter an existing expression. The call is a costly one whose

use should be made sparingly.

(63) SOLVE (LIST1, SYMBOL, LIST2)

SOLVE is one of the older SYMBOLANG routines whose use should be
avoided. It assures that the expression LISTl is linear in the
expression symbol SYMBOL and solves the equation (LIST1 = 0) for SYMBOL.

The solution is added to expression LIST 2 which is replaced by the sum.
The sum is returned as the value of the function.

19

(64) SRTRM(L)

SRTRM replaces term L with term L sorted lexicographically.

SUB is one of the older SYMBOLANG routines whose use should be
avoided. It returns the result of subtracting expression LIST1 from

expression LIST2, LIST1 is destroyed and LIST2 is replaced with the
difference,

b

(66) SUBT(LIST, SYMBOL, LIST2, LIST3, SYMBOL1l, QUANT1, . .
L5

(o) IAN'T‘E\
» XV

SYMBRO
SUBT acts as does INSUBT except that the substitution is limited to
one level. If SYMBOLi is set to the floating point value of 999, it

ends the effective calling sequence which should, however, be padded
out with zeros.

, LIST3, SYMBOL1, QUANTL, . . .

SUMPY is one of the older SYMBOLANG routines whose use should be
avoided. It returns the result of adding the product of expressions
LIST1 and LIST2 to expression LIST3 and truncating on the expression
symbols SYMBOL i to the powers QUANTi. The first SYMBOLi set to
floating point 999 terminates the effective calling sequence; however,

€ €11
the r‘:ﬂ]vno seguence should be nadded out with zeros.

STHBELILTY SnviuaAll Uh

(68) TRCAL (LIST, SYMBOL1, SYMBOL2)

TRCAL is one of the older SYMBOLANG routines whose use should be
avoided. It finds the lowest possible power to which the symb01 SYMBOL2
is raised in those terms of the expression LIST that contain the
expression symbol SYMBOLl1l. Then, the expression LIST is replaced by a
truncated copy in which those terms that contain the expression symbol
SYMBOL1 to a power greater than that minimal power of SYMBOL 2 are

discarded.

(69) TRUNC (LIST, SYMBOL, QUANT)

+h h vy
1 28

n
tne © 10
1

1 u
s the e) f disc

la n
terms that contaln the expre551on symbol SYMBOL to elther
th

3
wn W
=
jc.
Q ch
>
=z,
&
(2}
O
C.
ct
(=
=]
[(]
w
=,
oo
o
i;n [o¥%

b
rdin

I—‘ [

(e I

a power greater
power,

TSTCON returns 0 if the expression LIST is not a constant expression.

If it is a constant, it returns 1 and the variable VAR is set to the

.......... CODRTDAN ~n cra Viim
ct{u;va;cub rORTRAN constant value.

(71) VALARG (ARGS, INT)

VALARG is the same as INTARG except that it has a floating point
name.

72

f"\
—
N
m
=
(@]
]

-
[
—

(]

ED
LN

B. Expanded Capability Set

In addition to the basic SYMBOLANG subroutines, several other
routines are discussed by Dr. Bernstein. These routines are presented
below.

t—t

~

1) LSQCON (QUANT)

LSQCON returns an expression equivalent to the constant QUANT,
(2) LSQGCO (SYMBOL, QUANT, LIST)

LSQGCO returns the coefficient of the expression symbol SYMBOL
to th LIST

he power QUANT in the poiynominai LIST.

LSQIEQ causes 6HEQUAL to be defined as a means of creating defini-
tions, 6HEQUAL arises with the three argument call of INLIST, where
one wants to input an equation. LSQIEQ limits 6HEQUAL to two useful
arguments,

(o))

LSQIPN defines the expression symbol SHPRINT to print the value o
its first argument with its second argument as a name,

(5) LSQNDR (LIST, SYMBOL, N)

LSQNDR returns the Nth derivative of expression LIST with respect
to expression symbol SYMBOL.

(6) LSQNEB (LIST, N)

LSQNEB returns the Nth element from the bottom of list LIST.

21

(7) LSQNET (LIST, N)

2

LSQNET returns the Nth element from the top of list LIST.

(8) LSQXPN (LIST)

LSQXPN returns a version of the expression LIST in
have been largely removed. Parentheses remain only for
positive or negative fractional powers and to the power

A. Input and Qutput

The following code may be used to input and output

PROGRAM INPUT
DIMENSION SP (500)
CALL INITAS (SP, 500)

1 CONTINUE
CALL INLIST (LA, SHINPUT, 999, TEMP)
CALL LSQPNT (LA, 2HLA, 999., TEMP)
GO TO 1

END

s
H

which parentheses
expressions to
-1 unless a non-

expressions:

The following input cards run with the above program produce the

output shown below.

Input
Al1l$
Al12 + Al1lS$
NOMOR
Output
A11$
LA = All
$
$ END OF EXPRESSION
Al2 + All$
LA = A1l + Al2
$
$ END OF EXPRESSION
NOMOR

[3]
(3]

TA = N
LA =S U

Ly
¢
$ END OF EXPRESSION

An equation may be processed by changing the call to INLIST above
as follows:

CALL INLIST (LA, SHINPUT, 3HVAL, TEMP)

The followin

below:
E = M*C**28$
LA = EQUAL. (E, C**2*M)
$
$ END OF EXPRESSION

Note that the $§ is needed to properly terminate a legitimate 3

argument call of INLIST. Note also the use of the cell TEMP with a
call of a FORTRAN function.

B. Arithmetic Calculation

The following program may be used to add and multiply expressions:
PROGRAM TEST

DIMENSION SP(500)

CALL INITAS (SP, 500)

CALL INLIST (LA, SHINPUT, 999, TEMP)

CALL INLIST (LB, SHINPUT, 999, TEMP)

CALL LSQPNT (LA, 2HLA, 999., TEMP)

ATy T IR NS AR A R vy &id

CALL LSQPNT (LB, 2HLB, 999,, TEMP)
LC = LSQADD (LA, LB)

LD = LSQMEX (LA, LB)
CALL LSQPNT (LC, 2HLC, 999., TEMP)
CALL LSQPNT (LD, 2HLD, 999., TEMP)
CALL EXIT

END

If combined with the input below, the ensuing output results:

INPUT
Al1$
A12$

¢ OND O TNDIMT
¢ LiNU 1INF UL

OUTPUT

All$
A12$

23

END OF EXPRESSION
LB = Al2

END OF EXPRESSION
LC = All + Al2

rn

I

o9 A o A A

ne 2 nr
ur
= *

- <
.

SSION
A 12

=g

$
$ END OF EXPRESSION

C. Differentiation

[PN

PROGRAM TEST
DIMENSION SP (500)
CALL INITAS (SP, 500)

1 CONTINUE

CALL INLIST (LA, SHIN
LB = LDIF(LA, 1HX)
CALL LSQDES(LA, TEMP)
CALL

CALL LSQDES(LB, TEMP)
GO TO 1

END

The following program allows one to differentiate expressions
respect to the expression symbol X.

LSQPNT (LB, SHDERIV, 999., TEMP)

Note the use of LSQDES to destroy unneeded expressions and thus

The input below produces the output which follows.

INPUT

[
3 A

¢

X**2$

X**N§

1/X**N$
SIN(A*X)/COS(A*X)$
F(X,X,X)$

LOG(N*X) - N*LOG(X)$

o
=

1%
DERIV=0

“

END OF EXPRESSION

2 &

END OF EXPRESSION
X**2$
DERIV=2*X

©“3 9

END OF EXPRESSION
X**N$

MO TIP _ ATAV L4

A G

END QF EXPRESSION

1/X**N§
DERIV=-N*X**(~1-N)

o 9

END OF EXPRESSION

SIN(A*X)/COS{A*X)$
DERIV=A + A*COS (A*X)**(~2)*SIN(A*X)**2

o

END OF EXPRESSION
F(X,X,X)$
DERIV=PARTIAL(N.0,1) + PARTIAL(N.0,2) + PARTIAL(N.O0,3)

-

N.

Ti
\.—'

F (X, X, X

< 3>

END NE EYDRECCTNN
l\l.a

LOG(N*X) - N LOG(X)$
DERIV=-N*X**(-1) + X**(-1)

$ END OF EXPRESSION

NOMOR
DERIV=0

$
$ END OF EXPRESSION
D. Truncation
The following program may be used to truncate a programmed expres-
PROGRAM TEST
DIMENSION SP(500)

CALL INITAS(SP, 500)
LA = LSQMN3(LSQMN1(3.), LSQM¥3(5., 1HX, 11.),

25

1 LSQMNS5(-4., IHX, 22., IHY, 1.})
LAl = LSQTRC(LA, 1HX, 0., 999., 0,0)
LA2 = LSQTRC(LA, 1HY, 0., 999.. 0.0)
LA3 = LSQTRC(LA, 1HZ, 0., 999., 0,0)
LA4 = LSQTRC(LA, 1HX, 11., 999., 0,0)

CALL LSQPNT(LA, 2HLA, 999., TEMP)
CALL LSGPNT(LA1, JHLAL 999, , TEMP)
CALL LSQPNT(LAZ, aHLAZ, 995., TEMP
CALL LSQPNT(LA3, 3HLA3, 999., TEMP)
CALL LSQPNT(LA4, 3HLA4, 999., TEMP)
CALL EXIT

END

L

The program above produces the following output:

A= 3 + S*X**1] - AxX**22*Y

AT AT T Uy

L

$

$ END OF EXPRESSION
$

$

END OF EXPRESSION
LA3 = 3 + S5*X**11 - 4*X**22*Y

END OF EXPRESSION
LA4 = 3 + 5*X**]11]

E. Evaluation

The following program redefines a definition and simplifies an
expression:

PROGRAM TEST
DIMENSTION Qp(lonn
CALL INITAS (SP,
LA = LIST(9)

CALL LSQDES (LSQVAL(LA, 999), TEMP)
CALL LSQDES (LA, 999)

CALL LSQDEF (3HI.*,

)
1000)

LSQMN1 (LSQMN3
1 (1., 10H$.1.*$.$.$, 1.)), LSQMN1 (1OH$.1. *$.
CALL LSQDEF (3HCOS, LSQMN1(LSQMN4(1l., LSQMN2{
1 LSQMN3(-1., 3HSIN, 2.)), 3H.1*,.5)), 0, 999 T
10 CALL INLIST (LA, SHINPUT, 999, TEMP)
IF (LISTMT(LA) .EQ.0) CALL EXIT
CALL LSQPNT (LA, SHINPUT, 999, TEMP)

LB = LSQVAL (LA, 999)

[3S]
Ch

CALL LSQDES (LA, TEMP)

CALL LSQPNT (LB, SHVALUE 1, 999., TEMP)
LC= LSQVAL (LB, 999)

CALL LSQDES (LB, TEMP)

CALL LSQPNT (LC, 6HVALUE2, 999,, TEMP)
CALL LSQDES (LC, TEMP

GO TO 10
END

The following inputs for the above program produce the output shown
below,

INPUT
COS**2 + SIN**2$
COS(X)**2 + SIN(X)**2$
COS (X) *SIN(X) $

OUTPUT
COS**2 + SIN**2§
INPUT = COS**2 + SIN**2

A S

END OF EXPF

ION
VALUE1 2 + (1 - SIN**2)

A S

END OF EXPRESSION
VALUE2 = 1

oA

END OF EXPRESSION
COS(X)**2 + SIN(X)**2$
INPUT = COS(X)**2 + SIN(X)**2

END OF EXPRESSION
VALUEL = SIN(X)**2 + (1 - SIN**2, X)

09 A) A

F EXPRESSION
2 =1
END OF EXPRESSION

COS (X)*SIN(X)$
INPUT = COS (X)*SIN (X)

A A

O T AN

END OF EXPRESSION
VALUE1 = SIN(X)*(1 - SIN**2, X)**5E-1

2 5

END OF EXPRESSION
VALUE2 = (1 - SIN(X)**2)**SE-1*SIN(X)

A 5 &~ A

END OF EXPRESSION

IV. CONCLUDING REMARKS

The full power of SYMBOLANG becomes apparent after one begins to
use it. The subprograms of SYMBOLANG combined with those of SLIP give
the user a wide variety of options for solving a large class of problems.
In addition, one has at his disposal all of the FORTRAN language.

SYMBOLANG may be expanded by the user to include functions and sub-
routines of a general or specific nature. One such set of possible ex-
pansions is an integration package (see e.g. Slagle, J. R., A
Heuristic Program that Solves Symbolic Integration Problems in Freshman
Calculus, Journal of the Association for Computing Machinery, 1963, 10,
507-520). The user also has at his disposal through SYMBOLANG the
capability of defining his own functions and incorporating them into the
system,

No. of No. of
Copies Organization Copies Organization
12 Commander 1 Commander
Defense Documentation Center U.S. Army Missile Command
ATTN: DDC-TCA ATTN: AMSMI-R
Cameron Station Redstone Arsenal, Alabama
Alexandria, Virginia 22314 35809
1 Commander i Commander
U.S. Army Materiel Command U.S. Army Tank Automotive
ATTN: AMCDL Command
5001 Eisenhower Avenue ATTN: AMSTA-RHFL
Alexandria, Virginia 22333 Warren, Michigan 48090
1 Commander 2 Commander
U.S. Army Materiel Command U.S. Army Mobility Equipment
ATTN: AMCRD, BG H. A. Griffith Research § Development Center
5001 Elsen.ower Avenue ATTN: Tech Docu C ven, Dxdg. 315
Alexandria, Virginia 22333 AMSME - RZT
Fort Belvoir, Virginia 22060
1 Commander
U.S. Army Materiel Command 1 Commander
ATTN: AMCRD-T U.S. Army Armament Command
5001 Eisenhower Avenue Rock Island, Illinois 61202
Alexandria, Virginia 22333
1 Commander
1 Commander U.S. Army Harry Diamond
U.S. Army Aviation Systems Laboratories
Command ATTN: AMXDO-TI
ATTN: AMSAV-E Washington, DC 20438
12th § Spruce Streets
St. Louis, Missouri 63166 1 Director
National Bureau of Standards
1 Director Department of Commerce
U.S. Army Air Mobility Research Washington, DC 20234
and Development Laboratory
Ames Research Center
Moffett Field, California 94035 Aberdeen Proving Ground
1 Commander Marine Corps Ln Ofc
U.S. Army Electronics Command Dir, USAMSAA
ATTN: AMSEL-RD ATTN: J. Sperrazza
Fort Monmouth, New Jersey L. Bain
07703 E. Belbot
W. Wenger

DISTRIBUTION LIST

29

